

Field Case Study #3

Implementation of Low Salinity Waterflooding

Mike Singleton

Flow Assurance & Scale Team: Scale Workshop Treetops Hotel, Aberdeen, 29 January 2019

Background

 Low Salinity Waterflooding has been shown in some cases to increase recovery by ~16% compared to "High Salinity" case

Effect of low salinity on cumulative oil recovery profiles; brine injection in a clay-bearing core conditioned with crude oil (after Tang and Morrow, 1996).

2

Background

- Work undertaken for BP under FASTrac Commercial activity of FAST
- Series of detailed Core Flood experiments performed
- Supplemented by pore scale network modelling
- Results from which contributed to full field implementation of Low Salinity Waterflooding in Clair Ridge

Study at HWU - Laboratory

- Series of detailed Core Flood experiments performed
- Focus on factors controlling increased recovery
 - Brine Rock Oil interactions
- Reservoir conditioned core floods
 - Oil recovery
 - Full effluent analysis
 - brine composition by ICP analysis
 - pH

Core Flooding

Salinity transition from 35,000mg/l (High) to 1,000mg/l (Low)

Full effluent analysis – pH, [Ca²⁺], [Mg²⁺]

Oil Recovery

Results

Matching Experimental Data by Ion Exchange

Results

Multi-component ion exchange (MIE)

Where ...

- 1. MIE => leads to a "self freshening" zone (low Ca, Mg)
- 2. Within this zone double layer expansion occurs (DLVO)
- 3. Mixed –wet system becomes SLIGHTLY more water-wet

Pore Scale Modelling

Pore Network Model Representations of Porous Media

Quasi-static (capillary dominated) displacement physics described by Y-L equation

Pore Scale Modelling

Figure 16: Phase occupancy of the remaining oil for the low salinity (LS) water flood in a "mixed wet large" (MWL) system.

Pore Scale Modelling

Assume in oil wet pores: $\theta_{ow} HS = 140^{\circ} \Rightarrow \theta_{ow} LS = 130^{\circ}$

HS : $\cos 140^\circ = -0.766$

LS : $\cos 130^\circ = -0.6436$

Rw	Calc. R1	Calc. Sor	Calc. R2	∆Sor	%inc. oil
	(μm)		(μm)		
40	54	0.274	45.3	0.169	61.7
50	65	0.338	54.5	0.239	70.7
60	100	0.492	83.9	0.079	16.1

Results

Building on Multi-component ion exchange (MIE)

Where ...

- 1. MIE => leads to a "self freshening" zone (low Ca, Mg)
- 2. Within this zone double layer expansion occurs (DLVO)
- 3. Mixed –wet system becomes SLIGHTLY more water-wet
- 4. Consequence of changes of θ_{ow} are *LARGE* in ΔS_{or} according to simple pore-scale model ($P_{c,HS} = P_{c,LS}$)

Outcome

"[This work] has made a significant contribution to the fundamental understanding of the mechanism by which Low Salinity Water Flooding increases oil recovery. Without such understanding and contribution, BP would not be in a position to change their Water Flood strategy to a default base case position of Low Salinity Water Flooding."

BP's Chief Adviser on Low Salinity