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One-dimensional reactive transport modelling results
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The evidence from the produced brine chemistry suggests that the Gyda field has T s o oTberte anhydrite deposition
experienced a variety of geochemical reactions due to the high temperature and initial " 50000 100000 150000 200000
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calcium concentration, and so it is worth reviewing the produced water dataset and studying
what in situ geochemical reactions may be taking place.

Produced brine chemistry data from 16 wells in the Gyda field are plotted and analysed in
combination with general geological information and the reservoir description. A one
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 Ba, Sr and Mg concentrations vary across the field, but
the concentrations of other ions are more or less similar.

1) Anhydrite and barite precipitation were the two dominant mineral reactions taking place
deep within the reservoir. Sulphate is the limiting ion, with barium and calcium in excess
during barite and anhydrite deposition.

2) Celestite mineral reaction was not predicted, although the strontium concentration in the
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formation water is very high relative to other North Sea sandstone reservoirs. This is
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 Dominant scaling potential: BaSO, and CaSO, precipitation
 SrS0O, Saturation ratio > 1, but no SrSO, formation due to SO, being limiting ion
* Reduced BaS0O, and CaS0O, scaling at wells due to in situ ion stripping
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